
Constrained Feature Selection for Localizing Faults
Tien-Duy B. Le1, David Lo1, and Ming Li2,3

1School of Information Systems, Singapore Management University, Singapore
2National Key Laboratory for Novel Software Technology, Nanjing University

3Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing University
{btdle.2012,davidlo}@smu.edu.sg, lim@lamda.nju.edu.cn

Abstract—Developers often take much time and effort to find
buggy program elements. To help developers debug, many past
studies have proposed spectrum-based fault localization tech-
niques. These techniques compare and contrast correct and faulty
execution traces and highlight suspicious program elements. In
this work, we propose constrained feature selection algorithms
that we use to localize faults. Feature selection algorithms are
commonly used to identify important features that are helpful
for a classification task. By mapping an execution trace to
a classification instance and a program element to a feature,
we can transform fault localization to the feature selection
problem. Unfortunately, existing feature selection algorithms do
not perform too well, and we extend its performance by adding
a constraint to the feature selection formulation based on a
specific characteristic of the fault localization problem. We have
performed experiments on a popular benchmark containing 154
faulty versions from 8 programs and demonstrate that several
variants of our approach can outperform many fault localization
techniques proposed in the literature. Using Wilcoxon rank-sum
test and Cliff’s d effect size, we also show that the improvements
are both statistically significant and substantial.

I. INTRODUCTION

Bugs always occur during software development, and de-
bugging is a common task of developers to maintain software
quality. However, it is also costly and time consuming for
developers to manually find bugs in their programs. Recently,
several fault localization techniques have been proposed to
support developers in finding root causes of faults. One
major family of fault localization techniques is referred to as
spectrum-based fault localization (SBFL) [1], [2], [3]. These
approaches take as input a set of passed and failed test cases,
and analyze program spectra of successful and unsuccessful
executions. Program spectra records which program elements
are executed by a passing or failing test cases. Subsequently,
SBFL techniques compute suspiciousness scores for program
elements based on the program spectra. Various SBFL tech-
niques employ different formulas to compute these scores.
Suspiciousness scores reflect the likelihood of program ele-
ments to be buggy. Program elements are then sorted based on
their suspiciousness scores. Using this ranked list, developers
can manually inspect program elements from the beginning of
the list until the bug has been found.

In this work, we propose an approach to localize faults by
extending feature selection techniques. In machine learning,
feature selection is a preprocessing step that retains relevant,
important features of data instances that correlate to a particu-
lar class label, and excludes the irrelevant, redundant ones.

In our approach, we model fault localization as a feature
selection task, where program elements, test cases, and test
outcomes correspond to features, data instances, and class
labels, respectively. We use feature selection algorithms to
identify important program elements (features) that correlate
to a particular test outcome (class label). We are particularly
interested in program elements that correlate to failures (failing
test cases), since these elements are likely to be the locations
where faults reside. We propose constrained feature selection
(CFS) which extends standard feature selection to localize
root causes of failures more accurately. CFS adjusts scores
computed by a feature selection method by estimating how
close a feature is to a class. Our approach uses these adjusted
scores as suspiciousness scores of program elements. Similar
to past studies, e.g., [4], we consider basic block as the
granularity of program elements.

We have evaluated CFS to identify buggy basic blocks
on a dataset of 154 faulty versions from 8 programs. These
faults have been widely used to evaluate many SBFL stud-
ies [2], [1], [5], [4]. Using the Top-N score (i.e., number of
faults successfully localized within top N suspicious program
elements (i.e., basic blocks)) as the evaluation metric, our
experiment results show that CFS statistically significantly
and substantially outperforms popular (i.e., Tarantula [1] and
Ochai [2]) and theoretically-best SBFL formulas [3]. We also
compare CFS with standard feature selection methods, and
find that CFS improves the effectiveness of standard feature
selection methods for locating faults by 11.95% and 13.71%
in terms of average Top-5 and Top-10 scores, respectively.

The contributions of our paper are listed as follows:

1) We propose a constrained feature selection approach
which customizes standard feature selection techniques
for localizing faults.

2) We evaluate our proposed approach on a dataset of
154 faults of 8 software programs and demonstrate that
our approach statistically significantly and substantially
outperforms many popular and theoretically-best SBFL
formulas and standard feature selection techniques.

The rest of our paper is organized as follows: Section II
describes background material on spectrum-based fault lo-
calization and feature selection. We present the details of
the proposed approach and its evaluation in Section III and
Section IV, respectively. Section V highlights related work. We
conclude our paper and mention future work in Section VI.

1



II. BACKGROUND

A. Spectrum-based Fault Localization Techniques

1) SBFL Concept: In a nutshell, spectrum-based fault lo-
calization helps developers find the location of a bug in a
faulty program based on its passed and failed test cases. A
SBFL technique returns a ranked list of program elements
(e.g., statements, basic blocks, methods, files etc.) sorted by
their suspiciousness scores. If a program element is more likely
to be faulty, it is assigned with a higher suspiciousness score in
the ranked list. Using the output list, developers can manually
inspect program elements starting from the most suspicious
element until the root cause of the fault is identified.

To determine suspiciousness scores of program elements, a
SBFL technique first instruments a faulty program, and records
execution traces by running an input set of passed and failed
test cases. Each collected execution trace is a series of program
elements invoked by a particular test case. Subsequently, a
number of statistics are gathered from the execution traces for
each program element. We refer to these statistics as SBFL
statistics, which are shown in Table I. These statistics are
eventually converted to suspiciousness scores by using a SBFL
formula (presented in Section II-A2).

TABLE I
SBFL STATISTICS OF PROGRAM ELEMENT e

Executed Not-Executed
Failed nf (e) nf (ē)
Passed np(e) np(ē)

In Table I, nf (e) is the number of failed test cases that
cover a program element e. ns(e) is the number of passed test
cases that cover e. Similarly, nf (ē) is the number of failed
test cases that do not execute program element e, and np(ē) is
the number of passed test cases that do not execute program
element e. We also use other notations derived from the above
four statistics: nf is the total number of failed test cases (i.e.,
nf = nf (e) + nf (ē)), np is the total number of passed test
cases (i.e., np = np(e) + np(ē)).

2) SBFL Formulas: Each SBFL technique proposes its
own formula to calculate suspiciousness scores from SBFL
statistics. This section briefly describes two groups of SBFL
formulas that are investigated in our study: well-known and
theoretically-best formulas.

a) Well-Known Formulas: A number of SBFL formulas
have been proposed to localize faults [2], [1], [5]. Among these
formulas, Tarantula [1] and Ochiai [2] are the two popular
ones. Using notations described in Table I and Section II-A1,
Tarantula and Ochiai compute the suspiciousness score of a
program element e as follows:

Tarantula(e) =

nf (e)
nf

nf (e)
nf

+
np(e)
np

Ochiai(e) =
nf (e)√

nf (nf (e) + np(e))

According to the above formulas, both Tarantula and
Ochiai assign non-zero suspiciousness scores to program el-
ements that are executed by at least one failed test case
(i.e., nf (e) > 0).

b) Theoretically-Best Formulas: Recently, Xie et al. have
discovered two families of SBFL formulas that are theoreti-
cally better than a number of other formulas, including well-
known formulas such as Tarantula and Ochiai [3]. We refer
to the two theoretically best SBFL families as ER1 and ER5.
ER1 has two member formulas: ER1a and ER1b. ER5 has
three members: ER5a, ER5b, and ER5c. Using the notations
shown in Table I and Section II-A1, the formulas belonging
to the ER1 and ER5 families are:

ER1a(e) =

{
−1 if nf (e) < nf

np − np(e) if nf (e) = nf

ER1b(e) = nf (e)− nf (e)

np(e) + np(ē) + 1

ER5a(e) = nf (e)

ER5b(e) =
nf (e)

nf (e) + nf (ē) + np(e) + np(ē)

ER5c(e) =

{
0 if nf (e) < nf

1 if nf (e) = nf

Under some assumptions, the above five formulas (i.e., ER1a,
ER1b, ER5a, ER5b, and ER5c) are theoretically proved to be
the most effective ones among 30 SBFL formulas, including
Ochiai and Tarantula [3]. However, in practice, using standard
fault localization benchmark, Le et al. [6] demonstrate that the
five theoretically best formulas can be outperformed by Ochiai
if some assumptions do not hold.

B. Feature Selection Techniques

Feature selection is a preprocessing step for several machine
learning tasks such as classification, clustering etc. It helps
retain important, relevant features, and eliminate redundant,
irrelevant ones. For classification, feature selection returns
a subset of features that captures the most important and
distinctive characteristics of instances in each class.

Feature selection algorithms are classified into three major
families: filter, wrapper, and embedder. In this preliminary
study, we investigate effectiveness of feature selection tech-
niques that fall into the filter family for fault localization. We
leave the investigation of wrapper and embedder algorithms
for future work. Filter feature selection algorithms estimate
a score for each feature based on a statistical measure (e.g.,
chi-squared statistics, information gain, etc.). Features with
scores greater than a predefined threshold are included in the
output of a filter feature selection algorithm. In our study, we
consider the following algorithms [7]: chi-squared statistics,
information gain, gain ratio, Relief, and Fisher score.

III. PROPOSED APPROACH

Overall Framework. In machine learning, feature selection
outputs a subset of features that are relevant for a learning task.

2



Extending this concept, our study customizes feature selection
for fault localization tasks, i.e., we output a ranked list of
features (in our case: program elements) that captures the
most important and distinctive characteristics of instances in
a specific class (in our case: failed test cases). Our framework
takes as input a faulty program and a set of passed and
failed test cases. Using the given input, our approach collects
execution traces from the faulty program by running the
test cases one-by-one. Each execution trace consists of a
series of executed program elements and we refer to it as
a program spectrum instance. We extract a set of features
from an instance, where each feature corresponds to a program
element. The value of a feature is 1 if the corresponding
program element is executed when the program is run with
the corresponding test case, and 0 otherwise. An instance
is labeled positive (“+1”) if the corresponding test case is
a failed test case, and negative (“−1”) otherwise. A set of
labeled instances along with their feature values are forwarded
to the constrained feature selection module. This module then
determines which features capture the most important and
distinctive characteristics of failed test cases. Its output is a
ranked list of program elements (i.e., features) sorted by their
likelihood to be faulty. Subsequently, developers can manually
inspect the ranked list from the most suspicious program
element until the root cause of the fault is localized.

Constrained Feature Selection. In our study, we extend a
standard feature selection method to identify program elements
(i.e., features) that capture important characteristics of failed
test cases. A standard feature selection method identifies
features that can differentiate instances of different classes (in
our case: passed test cases and failed test cases). Unfortu-
nately, they do not differentiate features that characterize one
class from those that characterize another. Two features can
both have high discriminative power but characterize different
classes. If a feature characterizes the positive class (i.e., failed
test cases), a higher feature score indicates a higher likelihood
for the corresponding program element to be faulty. However,
if a feature characterizes the negative class (i.e., passed test
cases), a higher feature score indicates a lower likelihood
for the corresponding program element to be faulty. Thus,
features deemed discriminative and important by a standard
feature selection method may not necessarily be related to
fault locations.

To overcome this issue, there is a need to separate important
features based on how close they are to a class. We propose a
constrained feature selection (CFS) method to solve this prob-
lem. CFS adjusts the scores computed by a feature selection
method by estimating how close a feature is to a class. In
order to determine the class that is closer to a feature, we use
the following function:

RC(x) =

{
+1 if nf (x)

nf (x)+nf (x̄) >
np(x)

np(x)+np(x̄)

−1 if nf (x)
nf (x)+nf (x̄) ≤

np(x)
np(x)+np(x̄)

(1)

In the above function, the input parameter of RC is a feature
x, which corresponds to a program element. RC(x) is defined

Algorithm 1: Constrained Feature Selection for Localizing
Faults
Input: fprogram: faulty program

TC: a set of failed and passed test cases
FS: a feature selection method

Output: Ranked list of program elements sorted by their
likelihood to be faulty

1 Traces← execute TC to collect execution traces
2 data← extract features from Traces
// run FS to estimate feature scores

3 scores← FS(data)
4 suspiciousnessScores← {}
5 for pe ∈ fprogram do

// suspiciousness score of pe
6 susp← scores[pe]×RC(pe)
7 suspiciousnessScores[pe]← susp
8 end
// construct the ranked list

9 rankedList←
sort(fprogram, suspiciousnessScores)

10 return rankedList

based on the notations of SBFL statistics (see Table I) to
determine which class (i.e., positive or negative) that x is
closer to. nf (x)

nf (x)+nf (x̄) is the ratio between the number of
failed test cases that execute x and the total number of failed
test cases. A higher value of this ratio indicates a stronger
relationship between x and failed test cases. np(x)

np(x)+np(x̄)

is the ratio between the number of passed test cases that
execute x and the total number of passed test cases. A higher
value of this ratio indicates a stronger relationship between x

and passed test cases. If nf (x)
nf (x)+nf (x̄) is strictly higher than

np(x)
np(x)+np(x̄) , then x is closer to the positive class (i.e., failed
test cases). Therefore, RC(x) returns “+1”. On the other hand,
if nf (x)

nf (x)+nf (x̄) is less than or equal to np(x)
np(x)+np(x̄) , x is closer

to the negative class (i.e., passed test cases). In this case,
RC(x) returns “−1”.

Algorithm 1 shows how CFS employs RC(x) to adjust fea-
ture scores returned by a feature selection method. The input
of the algorithm is a faulty program, a set of failed and passed
test cases, and a feature selection method FS. The output of
the algorithm is a ranked list of program elements sorted by
their likelihood to be faulty. In the algorithm, lines 1 to 2 run
the input test cases, and extract features from the collected
execution traces. Line 3 runs a feature selection method FS
to estimate feature scores of program elements. Lines 5 to 8
compute suspiciousness scores based on the feature scores and
the return values of the RC(x) function (see Equation 1).
According to line 6, the suspiciousness score of a program
element x is a product of the corresponding feature score
and the return value of RC(x). The RC(x) function adjusts
the signs of the scores of features (i.e., program elements)
that are more relevant to the negative class (i.e., passed test
cases). Therefore, features that are more important to the
positive class (i.e., failed test cases) have higher suspiciousness

3



TABLE II
DATASET DESCRIPTION

Program LOC Language # Faults # Test Cases
print token 478 C 5 4130
print token2 399 C 10 4115
replace 512 C 31 5542
schedule 292 C 9 2650
schedule2 301 C 9 2710
tcas 141 C 36 1608
tot info 440 C 19 1051
space 6,218 C 35 13,585

scores than those that are more important to the negative class.
Subsequently, line 9 sorts program elements in descending
order of suspiciousness scores. Program elements that appear
at the beginning of the ranked list are the ones with highest
feature scores among features that closer to the positive class
(i.e., failed test cases). On the other hand, program elements
that appear at the end of the ranked list are the ones with
highest feature scores among features that are closer to the
negative class (i.e., passed test cases). Finally, line 10 returns
the ranked list of program elements.

IV. EXPERIMENTAL EVALUATION

A. Dataset

Table II describes a benchmark dataset that we use in this
preliminary study to evaluate the effectiveness of fault local-
ization techniques. It consists of multiple faulty versions of 8
C programs, i.e., Space, and 7 other programs obtained from
the Siemens test suite, namely print tokens, print tokens2,
replace, schedule, schedule2, tcas, and tot info. Space is an
interpreter for Array Definition Language (ADL) used in
European Space Agency. Faults in the Siemens programs are
seeded, while faults in Space are either real or seeded. We
instrument basic blocks of these versions, and remove versions
that our instrumentation technique is unable to reach (e.g.,
faults in global variable declarations). In total, we include
154 faulty versions of the 8 programs. These faulty versions
have been widely used to evaluate the effectiveness of several
spectrum-based fault localization techniques [2], [1], [5], [4].

B. Evaluation Metric & Experimental Settings

As evaluation metric, we use Top-N score, which is number
of faults which can be successfully localized within top N
most suspicious program elements. This score is motivated by
the findings of Parnin and Orso [8]. They report that developers
do not find fault localization to be useful if correct buggy
elements do not appear among top-ranked program elements.
Given a ranked list of program elements for localizing a fault,
if one of the faulty program elements appears in the N most
suspicious program elements, we classify the fault as success-
fully localized in the corresponding faulty program version.
Note that ties are randomly broken. For example, if there
are 20 program elements sharing the highest suspiciousness
scores, we randomly select 10 of them to form the 10 most
suspicious program elements. Since randomness is involved in
the calculation of Top-N score, following Arcuri and Briand,
we repeat the Top-N calculation process 1,000 times (we

TABLE III
AVERAGE TOP-N SCORE: CONSTRAINED AND STANDARD FEATURE

SELECTION FOR FAULT LOCALIZATION. BEST SCORES ARE
HIGHLIGHTED IN BOLD.

Approach Average
Top-1 Top-5 Top-10

CFSCS 20.903 68.305 90.908
CFSFS 20.835 71.907 92.965
CFSGR 21.390 69.673 90.569
CFSIG 22.746 72.475 95.000
CFSRF 5.201 27.308 46.125
CFSSU 22.666 70.316 92.626
CS 20.727 61.752 80.331
FS 20.634 61.560 79.809
GR 21.295 62.978 81.316
IG 22.426 65.921 85.121
RF 3.748 23.564 37.530
SU 22.569 63.663 82.822

randomly break ties in different ways), and report the average
Top-N score over the 1,000 iterations. In our experiments, we
investigate N ∈ {1, 5, 10}.

We investigate a number feature selection methods including
Chi-Square (CS), Fisher Score (FS), Gain Ratio (GR), Infor-
mation Gain (IG), Symmetrical Uncertainty (SU), and Relief
(RF). The implementation of these methods are available in the
the Weka toolkit1 (v3.6.10) and Java-ML toolkit2 (v0.1.7). We
denote a variant of our proposed constrained feature selection
technique built upon a standard feature selection method as
CFSFS , where FS is a symbol representing a feature selection
method (i.e., CS, FS, GR, IG, SU, RF).

C. Results

1) RQ1: How effective is our constrained feature selection
technique for fault localization?

In this research question, we inspect six variants of our
constrained feature selection technique for fault localization.
Table III shows the average Top-N scores of the six CFS
variants. We can note that CFSIG, CFSSU, and CFSFS achieve
the best average top-N scores (N ∈ {1, 5, 10}).

2) RQ2: Can constrained feature selection outperform ex-
isting SBFL techniques?

In this research question, we compare the effectiveness of
CFS variants with well-known and theoretically best SBFL
formulas (see Section II-A). Table IV shows the average Top-
N scores of the seven SBFL formulas. We can note that
Ochiai achieves the best average Top-1, 5, and 10 scores of
20.249, 69.852, and 91.601, respectively. Next, we perform the
Wilcoxon rank-sum test [9] (at significance level of 1%) and
compute Cliff’s d effect size [10] to compare the average Top-
N scores between the three most effective CFS variants (i.e.,
CFSIG, CFSSU, and CFSFS) and Ochiai. We utilize R (3.2.1)3

to perform the statistical tests.
Table V shows the result of Wilcoxon rank-sum tests and

Cliff’s d effect sizes. We find that the differences between
average Top-N scores of all CFS variants and Ochiai are all
statistically significant. Importantly, the Cliff’s d effect sizes

1http://www.cs.waikato.ac.nz/ml/weka/index.html
2http://java-ml.sourceforge.net/
3http://www.r-project.org/

4

http://www.cs.waikato.ac.nz/ml/weka/index.html
http://java-ml.sourceforge.net/
http://www.r-project.org/


TABLE IV
AVERAGE TOP-N SCORES: WELL-KNOWN AND THEORETICALLY-BEST

SBFL FORMULAS.

Approach Average
Top-1 Top-5 Top-10

Ochiai 20.249 69.852 91.601
Tarantula 16.720 59.211 74.559
ER1a 16.694 65.317 89.801
ER1b 16.690 65.290 89.600
ER5a 5.062 24.333 47.001
ER5b 5.062 24.333 47.001
ER5c 5.135 24.653 47.044

TABLE V
CLIFF’S D EFFECT SIZES AND WILCOXON RANK-SUM TEST RESULTS:

CFS VARIANTS VS. OCHIAI. “*” INDICATES THAT THE DIFFERENCE
BETWEEN THE AVERAGE TOP-N SCORES IS STATISTICALLY SIGNIFICANT

(AT SIGNIFICANCE LEVEL OF 1%).
“(TRIVIAL(T)/SMALL(S)/MEDIUM(M)/LARGE(L))” DENOTES THE

CATEGORIZATION OF EFFECT SIZE.

CFS Variant Ochiai
Top-1 Top-5 Top-10

CFSIG 0.63* (L) 0.74* (L) 0.72* (L)
CFSFS 0.18* (S) 0.36* (M) 0.65* (L)
CFSSU 0.61* (L) 0.25* (S) 0.16* (S)

indicate that all of the differences between average Top-N
scores are substantial (i.e., more than “trivial”). Overall,
our proposed constrained feature selection approach statisti-
cally significantly and substantially outperforms popular and
theoretically-best SBFL formulas.

3) RQ3: Can constrained feature selection techniques out-
perform standard feature selection techniques for fault local-
ization?

In this research question, we compare six variants of con-
strained feature selection (CFS) with standard feature selection
methods: Chi-Square, Fisher Score, Gain Ratio, Information
Gain, Relief, and Symmetrical Uncertainty. Table III shows
the average Top-N scores of these methods. We can note
that the mean of average Top-1 scores of standard feature
selection methods are comparable to those of CFS variants.
However, their Top-5 and Top-10 scores are lower; the mean of
average Top-5 and Top-10 scores of the standard methods are
approximately 11.95% and 13.71% lower than those of CFS.
Wilcoxon rank-sum tests and Cliff’s d effect sizes indicate that
the differences of Top-5 and Top-10 scores are statistically
significant and substantial (detailed results are not presented
due to page limit). Overall, constrained feature selection is
more effective in localizing faults than the standard methods.

D. Threats to Validity
We have checked our implementation and fixed any errors

found, but there can still be errors that we are not aware of.
We have analyzed 154 buggy versions from 8 programs written
in the C language. These programs and buggy versions have
been used to evaluate many past SBFL techniques [2], [1],
[5], [4]. In the future, we plan to investigate more faults from
more programs which are written in various programming
languages. We employ the Top-N score, with different settings
of N (i.e., N ∈ {1, 5, 10}), as the evaluation metric. Top-N
score has been used as an evaluation metric in many other
studies, e.g., [11], [12].

V. RELATED WORK

We have highlighted a number of SBFL techniques in Sec-
tion II. Aside from these works, Roychowdhury and Khurshid
propose an approach that also uses feature selection for fault
localization [13]. Their approach employs Relief to localize
faults. Our approach is different; instead of directly using
scores computed by a feature selection method to localize
faults, we adjust the scores by estimating how close a feature
is to a class of test cases (i.e., passed or failed test cases).
Our experimental results show that our proposed constrained
feature selection (CFS) approach outperforms many standard
feature selection methods in localizing faults, including Relief.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose constrained feature selection
(CFS) which customizes standard feature selection techniques
for locating faults. We adjust scores computed by a feature
selection technique by estimating how close a feature is to
a class. Using the Top-N score as the evaluation metric,
we have evaluated CFS on a dataset of 154 faulty versions
from 8 programs. We find that CFS statistically significantly
and substantially outperforms popular and theoretically-best
SBFL formulas. Also, compared to standard feature selection
methods, CFS improves their average Top-5 and Top-10 scores
by 11.95% and 13.71% respectively.

As future work, we plan to investigate better ways to adapt
existing feature selection techniques for fault localization, e.g.,
by refining Equation 1. We also plan to combine different CFS
variants as well as current SBFL techniques to construct a
more effective fault localization technique following compo-
sition techniques proposed in recent works [4], [14].
Acknowledgement. Ming Li is supported by NSFC
(61422304,61272217) and JiangsuSF (BK20131278).

REFERENCES

[1] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in ASE, 2005.

[2] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in TAICPART-MUTATION, 2007.

[3] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu, “A theoretical analysis of the
risk evaluation formulas for spectrum-based fault localization,” TOSEM.

[4] Lucia, D. Lo, and X. Xia, “Fusion fault localizers,” in ASE, 2014.
[5] Lucia, D. Lo, L. Jiang, and A. Budi, “Comprehensive evaluation of

association measures for fault localization,” in ICSM, 2010.
[6] T.-D. B. Le, F. Thung, and D. Lo, “Theory and practice, do they match?

a case with spectrum-based fault localization,” in ICSM, 2013.
[7] I. Witten, E. Frank, and M. Hall, Data Mining: Practical Machine

Learning Tools and Techniques. Morgan Kauffman Publisher, 2011.
[8] C. Parnin and A. Orso, “Are automated debugging techniques actually

helping programmers?” in ISSTA, 2011.
[9] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics

bulletin, pp. 80–83, 1945.
[10] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal

questions.” Psychological Bulletin, vol. 114, no. 3, 1993.
[11] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?

more accurate information retrieval-based bug localization based on bug
reports,” in International Conference on Software Engineering, 2012.

[12] T. D. Le, R. Oentaryo, and D. Lo, “Information retrieval and spectrum
based bug localization: Better together,” in ESEC/FSE, 2015.

[13] S. Roychowdhury and S. Khurshid, “Software fault localization using
feature selection,” in MALETS, 2011.

[14] J. Xuan and M. Monperrus, “Learning to combine multiple ranking
metrics for fault localization,” in ICSME, 2014, pp. 191–200.

5


