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Abstract

During software maintenance, bug report is an effective way
to identify potential bugs hidden in a software system. It is
a great challenge to automatically locate the potential buggy
source code according to a bug report. Traditional approaches
usually represent bug reports and source code from a lexical
perspective to measure their similarities. Recently, some deep
learning models are proposed to learn the unified features by
exploiting the local and sequential nature, which overcomes
the difficulty in modeling the difference between natural and
programming languages. However, only considering local
and sequential information from one dimension is not enough
to represent the semantics, some multi-dimension informa-
tion such as structural and functional nature that carries ad-
ditional semantics has not been well-captured. Such informa-
tion beyond the lexical and structural terms is extremely vital
in modeling program functionalities and behaviors, leading to
a better representation for identifying buggy source code. In
this paper, we propose a novel model named CG-CNN, which
is a multi-instance learning framework that enhances the uni-
fied features for bug localization by exploiting structural and
sequential nature from the control flow graph. Experimental
results on widely-used software projects demonstrate the ef-
fectiveness of our proposed CG-CNN model.

Introduction
As software systems grow rapidly, the scale of software
project becomes larger and more complex, leading to in-
creasing in difficulty to identify software bugs before its
formal release due to the inadequate testing resources and
tight development schedule. Thus software systems are of-
ten shipped with bugs.

Therefore, developers usually facilitate fast and efficient
identification and fixing of bugs in a released software sys-
tem based on bug reports. Bug reports, which are docu-
ments written in natural language specifying the situations
in which the software fails to behave as it is expected or fol-
low the technical requirements of the system. Unfortunately,
many projects often receive more bug reports than what they
can handle. To resolve each report, developers usually need
to spend much time and effort.
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To alleviate the burden of developers, various effective
models for bug localization have been proposed (Gay et
al. 2009; Zhou et al. 2012; Ye et al. 2014; Huo et al.
2016). Most existing methods treat the source code as nat-
ural language by representing both bug reports and source
files based on traditional feature representations, and corre-
late their relevance by measuring similarity in the same fea-
ture space. For example, (Gay et al. 2009) represented both
source code and bug reports using the vector space model
(VSM), where the similarities between buggy source files
and bug reports are computed for bug localization. (Zhou et
al. 2012) proposed a revised vector space model (rVSM),
where similar historical bug reports information is exploited
to improve the bug localization results obtained by measur-
ing the similarity between bug reports and source files. Re-
cently, to overcome the difference between natural and pro-
gramming languages, Huo et al. (2016) proposed a unified
framework that employs different convolutional neural net-
works to extract features from bug reports and source code
respectively. The unified features are further enhanced by
exploiting the sequential nature of source code via combin-
ing a LSTM model (Huo and Li 2017), which is proved ef-
fective in modeling source code and improving the perfor-
mance of locating buggy source files.

However, previous models have not fully extracted se-
mantics from source code, since the structural and func-
tional nature of the programming language have not been
well-captured, which may cause the loss of semantic infor-
mation from the source code. Huo et al. (2016) designed
a model based on convolutional neural network to gener-
ate high-level semantics based on the relationships among
local statements, and the model in Huo et al. (2017) was
built to exploit the sequential nature of source code. How-
ever, only modeling the local and sequential nature of source
code are not enough, programming language contains more
complex structure that involved multi-dimension informa-
tion, such as “branch” and “loop” structure, which carries
more structural and functional information. For example, a
branching structure “if-then-else” defines two paral-
lel groups of statements. Each group of statements interacts
with the context before and after the branching block and
forms two different execution paths. However, there are no



interactions between the two groups and the semantics of
the two paths are different. Directly extracting semantic fea-
tures among statements sequentially or locally may lose the
structural semantics.

Therefore, in order to generate a more representative fea-
ture, more information about source code such as structural
and functional semantics should be carefully considered.
Control Flow Graph (CFG) (Allen 1970) is a kind of repre-
sentation using graphic notations to represent source code,
which carries rich structural and functional information, and
all paths of CFG are generated by traveling through the pro-
gram during its execution process. The control flow graph
contains rich information reflecting the structural and func-
tional nature of the source code, which is able to provide a
better representation of source code and improve bug local-
ization efficiency. However, there is no previous work that
focuses on extracting semantic features from a control flow
graph for bug localization.

One question arises here: how to utilize the information
from CFG to generate the representation of source code?
Extracting features from CFG contains two main challenges.
First, how to generate the semantic feature of each node of
CFG (i.e., each statement in source code). Different from
previous graph based data, CFG is a directed graph and con-
tains many execution paths of source code. Each statement
of the source code is represented as a node in the CFG. The
semantics of each statement is not only relative with the to-
kens it contains, but also relative with the neighboring state-
ments in the same execution paths of source code. Another
challenge is that how to represent the whole source code
considering the structural and functional information from
the CFG. It can be noticed that, each path of CFG contains
different semantics that needs to be processed separately. In
addition, the statements in each execution paths may contain
sequential relationships, which should be carefully modeled
for feature extraction.

In this paper, we propose a novel unified model based on
multi-instance decomposition framework named CG-CNN
(Control flow Graph embedding based Convolutional Neu-
ral Network), which aims to generate a better unified feature
from bug reports and source code for bug localization. As
aforementioned, learning semantics from source code con-
tain big challenges and is the key of CG-CNN. To address
the first challenge in programming language processing,
CG-CNN firstly employs a convolutional neural network to
incorporate local semantics of each statement to preserve the
integrity, and further enhance feature representation by using
DeepWalk to consider the relationships between neighbor-
ing statements. To address the second challenge, we design a
multi-instance learning framework to generate the semantics
from the CFG of source code. The CFG of a program con-
tains multiple paths and each path in the control flow graph
is considered as an instance while the whole code is a bag. If
any path is relevant with the bug report that labeled as buggy
(positive), the source code file is buggy and relevant to the
bug report. Therefore, learning semantic feature representa-
tion from CFG of source code can be regarded as a multi-
instance learning task. Experimental results on widely-used
software projects show that CG-CNN performs significantly

better than state-of-the-art methods, indicating that exploit-
ing control flow graph based information from source code
is beneficial for improving bug localization performance.

The contributions of our work are summarized as follows:
• We are the first to employ control flow graph of source

code for bug localization based on multi-instance decom-
position to extract semantic features from the control flow
graph of a program, where both structural and sequential
nature from the source code can be carefully captured and
modeled.

• We propose a novel deep model named CG-CNN to learn
unified features from control flow graph for bug localiza-
tion. CG-CNN firstly applies CNN and DeepWalk to learn
a representation of each statement and then utilizes multi-
instance learning framework to learn representation of the
source code from the multiple execution paths.
The rest of this paper is organized as follows. In Section

2, some related work about bug localization are discussed.
In Section 3, we introduce the details of our proposed model
CG-CNN. The experiments and some discussions are pre-
sented in Section 4, and finally in the last section, we con-
clude the paper and issue some future work.

Related Work
To maintain software quality assurance, many bug local-
ization approaches have been studied in recent years. Bug
localization, which identifies and locates source files po-
tentially responsible for the bug reported in bug reports, is
an extremely vital but costly task in software maintenance.
Most traditional approaches treat the source code as docu-
ments and formalize the bug localization problem as a doc-
ument retrieval problem, which calculate the relevancy be-
tween a bug report and a source file to identify buggy source
code (Poshyvanyk et al. 2007; Lukins et al. 2008). For ex-
ample, Gay et al. (2009) employed Vector Space Model
(VSM) based on concept localization to represent bug re-
ports and source code as feature vectors, which are used to
measure the similarity between bug reports and source files.
Zhou et al. (2012) also proposed BugLocator approach using
revised Vector Space Model, which is based on document
length and similar bugs that have been solved before as new
features. Recently, more information and features from bug
reports and source code have been investigated for identi-
fying bugs. Saha et al. (2013) utilized structured informa-
tion from source code, such as class and method to enable
more accurate bug localization. Wang et al. (2014) proposed
AmaLgam that combines version history, similar report and
structure to further improve bug localization performance.

Recently, deep learning models are very popular and have
achieved enormous success in many software engineering
tasks (Mou et al. 2016; White et al. 2015). For example,
Mou el al. (2016) proposed a novel tree-based convolu-
tional neural network for programming language, which is
effective in several software tasks such as program func-
tionality classification and bubble sort program detection.
Wei and Li (2017) studied software functional clone detec-
tion by applying a novel tree-based LSTM model, which
is able to exploit the lexical and syntactical information



from source code. Shi et al. (2019) proposed a specific net-
work to employ autoencoder to learn the feature of revi-
sion from an original-new source codes pair. There are also
some work using deep learning models to identify buggy
source code according to bug reports. For example, Lam
et al. (2015), proposed a novel deep model that combines
a kind of deep neural network (Auto-Encoder) and the re-
vised Vector Space Model (rVSM) to improve bug localiza-
tion performance. Shi et al. proposed a special type of deep
neural networks, which employ autoencoder to learn the fea-
ture of revision from an original-new source codes pair. To
overcome the structural difference between natural and pro-
gramming languages, Huo et al. (2016) designed particu-
lar convolutional operations for programming language and
proposed a CNN-based model to learn unified features from
bug reports and source code for identifying buggy source
code. The unified features are further enhanced by combin-
ing LSTM and CNN to generate richer information by ex-
ploiting the sequential nature of source code (Huo and Li
2017). Different from previous work, the goal of this paper
is to show the rich information respecting to the structure of
source code can be leveraged to improve bug localization.
We consider to extract features from CFG and formalize this
problem as a multi-instance learning problem, where a spe-
cific model CG-CNN is designed to address this challenge.

In addition, many models have been proposed to learn la-
tent representation of nodes in a graph. For example, Per-
ozzi et al. (2014), presented DeepWalk to learn latent social
representations of vertices. Using local information from
truncted random walks as input, DeepWalk learns a repre-
sentation which encodes structural regularities. Experiments
on a variety of different graphs illustrate the effectiveness of
our approach on challenging multi-label classification tasks.
Grover and Leskovec (2016) further extended DeepWalk by
proposing a novel method named node2vec, which learns a
mapping of nodes to low-dimensional space of features that
maximizes the likelihood of preserving network neighboring
of nodes. Node2vec defines a flexible notion of a node’s net-
work neighborhood and design a biased random walk pro-
cedure, which efficiently explores diverse neighborhoods.
Generating from CFG is different from previous work, since
CFG is directed and contains multiple paths reflecting the
execution procedure of the source code. In our work, we de-
sign a multi-instance learning framework to extract features
from CFG.

Our Method
In this paper, we introduce multi-instance decomposition
for bug localization, which aims to locate the potentially
buggy source files that produce the program behaviors spec-
ified in a given a newly finished bug report. Each source
code is considered as a bag and the execution paths in
the source code are considered as instances. Let C =
{C1, C2, . . . , CN1

} denote the set of source code files,
where Ci = {pi1, pi2, . . . , pini} is a source file with ni
execution paths. Let R = {r1, r2, · · · , rN2

} denotes the
collection of bug reports, where N1, N2 denote the number
of source files and bug reports, respectively. The learning
task of bug localization aims to learn a prediction function

f : R × C 7→ Y . yij ∈ Y = {+1,−1} indicates whether
a source file Cj ∈ C is relevant to a bug report ri ∈ R. We
instantiate the learning task based on multi-instance learn-
ing decomposition by proposing a novel deep model named
CG-CNN (Control flow Graph based Convolutional Neural
Network), which takes bug reports and source code as inputs
and learns a unified feature mapping the ψ(·, ·) for a given
ri and Cj , based on which the prediction can be made with
a subsequent output layer.

The General Framework of CG-CNN
The general framework of CG-CNN is shown in Figure 1.
Specifically, CG-CNN consists of four main components:
input and processing layer, language specific feature extrac-
tion layer, joint feature fusion layer and the last is output and
prediction layer. In training process, pairs of source code and
bug reports and their relevant labels are fed into the network,
and the model is trained iteratively to optimize the loss. In
testing process, a new bug report and some source code that
potentially contains the corresponding bug is fed into the
model, which outputs their relevant score indicating which
code is highly relevant with the given bug report and are lo-
cated as buggy.

Input and 
processing layer

Language-
specific feature 
extraction layer

Programming language 
specific network

Fully-connected networks for feature fusion

Output

Source code Bur reports

Joint feature 
learning layer

Output and 
prediction layer

Embedding Embedding

Natural language 
specific network

Figure 1: The general framework of CG-CNN. The model contains
4 main parts: input and processing layer, language specific feature
extraction layer, joint feature fusion layer and the last is output and
prediction layer.

To extract high-level semantic features for identifying
buggy files, source code and bug reports are firstly encoded
as feature representation, and then feed into the network in
the input and processing layer. Since bug reports are writ-
ten in natural language while source code is in program-
ming language, they contain different structure and seman-
tics which should be processed from different ways. There-
fore, CG-CNN designs two networks to process source code
and bug reports separately in language specific feature ex-
traction layer: natural language specific feature extraction
network and programming language specific feature ex-
traction network. Following the standard approaches (Kim
2014), natural language specific feature extraction network



Public static void main …
int a=10;
if  (a>5)

a = a/2;
…… 

for (i=1: i<=10; i++){
a = a+1

}
……
……

LSTM

LSTM

Part 1: Learning representation of 
statements by CNN and DeepWalk process

LSTM

CNN

DeepWalk

Part 2: Extracting semantic features of 
source code from control flow graph

Figure 2: The overall structure of programming language specific feature extraction network in CG-CNN, which contains two parts to learn
semantic feature representation of source code. The first part aims to learn representation of each statement, which employs CNN to extract
the inner information of statements and a DeepWalk process to model the relationships among neighboring statements. Afterwards, the second
part aims to extract the semantic feature based on multi-instance learning setting. The LSTM layer is used to exploit the sequential nature
along with the statements in the execution paths and the last pooling layer is connected to generate high-level feature representation among
all execution paths.

is built based on CNN to extract semantic features zr from
bug reports.

To extract features from source code, the programming
language specific feature extraction network mainly con-
tains two parts. The first part aims to learn semantic feature
representation of each statement: CNN is utilized to capture
the information locally within each statement while Deep-
Walk is used to model the relationships among neighboring
statements. The second part aims to learn semantic feature
vector zc to represent the whole source code while consider-
ing the structure from the control flow graph, where a multi-
instance learning framework is used to model the structural
feature. The programming language specific feature extrac-
tion component is the key part of CG-CNN, which will be
carefully introduced in the following subsection.

Then, language-specific features of bug reports and
source code are fused into a unified feature representation
via joint feature learning layer, followed by a linear output
and prediction layer mapping the unified features toY which
predicts whether source code Cj is related to bug report ri.

Programming Language Processing by Control
Flow Graph Embedding based on Multi-Instance
Decomposition
In this section, we introduce the details of programming lan-
guage specific feature extraction for source code, where a
novel framework is designed based on multi-instance de-
composition to extract the structural and functional nature
from the control flow graphs of the source code.

There have been some models that focus on learning se-

mantic features from source code for bug localization. How-
ever, the structural and functional nature of the programming
language has not been well-captured by previous methods,
which may cause the loss of semantics. For example, Huo et
al. proposed NP-CNN (Huo et al. 2016), which focuses on
learning semantic feature of source code considering the lo-
cal information based on CNN. Furthermore, LS-CNN (Huo
and Li 2017) is built to exploit the sequential nature of
source code by combining CNN and LSTM. However, only
modeling local and sequential relationships among state-
ments are not enough, and the source code in programming
language contains a more complex structure that involved
multi-dimension information, such as “branch” and “loop”
structure. Therefore, we aim to show that the rich structural
information can be leveraged to improve bug localization.
In this paper, we choose Control Flow Graph (CFG), which
is a kind of graph to represent source code and carries rich
structural and functional information. It is very important to
extract semantic features from CFG reflecting the structural
and functional nature of the program.

As aforementioned, learning semantic representation of
CFG contains two main challenges. First, how to generate
the semantic feature of each node of CFG (i.e., each state-
ment of source code). Another challenge is that how to rep-
resent the whole code considering the structural and func-
tional information from CFG. CG-CNN designs two spe-
cific structures to deal with these challenges. The general
framework of programming language specific network is il-
lustrated in Figure 2. The first part of the network aims to
learn the semantics of each statement and deal with the first
challenge, where CNN and DeepWalk are used to extract in-



formation within and between statements, respectively. The
second part of the network aims to learn the representation
of the whole code from the control flow graph via multi-
instance decomposition, which aims to deal with the second
challenge.

Learning feature representation of statements The first
part of programming language specific feature extraction
layer aims to learn the representation of each statement. Dif-
ferent from previous graph based data, the CFG is directed
and contains many execution paths of source code. Each
statement of the source code is represented as a node in the
CFG. The semantics of each statement is not only relative
with its tokens, but also with the neighboring statements in
the same execution paths of source code. CG-CNN firstly
applies CNN to represent each statement by incorporating
the semantic of the tokens, where convolutional filters are
applied to slide across tokens to generate semantic features.
Inspired by Huo’s work (Huo et al. 2016), the filters should
be designed to slide within each statement and stop when
meet the end of each statement, respecting to the atomicity
of statements in semantics explicitly. The semantic features
of each statement can be extracted via convolutional oper-
ations in this way and the integrity of each statement will
be also preserved. Suppose each path contains l statements
and each statement contains n tokens. After processing by
convolutional and pooling operations, each statement will
generate a middle-level feature representation xm, where m
is the number of filters in the CNN layers.

After processed by CNN, CG-CNN then introduces
DeepWalk to learn the semantic representation by con-
sidering the neighboring statements. DeepWalk uses Skip-
Gram (Mikolov et al. 2013a), a widely-used distributed
word representation method, into the social network for the
first time to learn node representation according to network
structure, which can also be used to learn node representa-
tion in control flow graph. Since the paths in the control flow
graph represent the execution procedure and contains se-
mantic relationships. DeepWalk firstly generates short ran-
dom walks from the control flow graph. Given a sequence of
node S = {v1, v2, . . . , v|S|} generated by random walks, the
node v ∈ {vi−t, . . . , vi+t} \ {vi} is regarded as the context
of the center node vi, where t is the window size. Following
the idea of Skip-Gram, DeepWalk aims to maximize the av-
erage log probability of all node-context pairs in the random
walk node sequence S:

1

|S|

|S|∑
i=1

∑
−t≤j≤t,j 6=0

log p(vi+j |vi) (1)

Afterwards, DeepWalk uses Skip-Gram to learn represen-
tations of node from sequence generated by random walks,
which refers to each statement in the source code. By in-
troducing random walks on control flow graph, DeepWalk
is able to learn the semantic representation of each state-
ment considering the relationships among neighboring state-
ments. The semantic feature of each statement are generated
during first part.

Extracting features from control flow graph based on
multi-instance decomposition The second part of CG-
CNN aims to learn semantic representation of the whole
code from the control flow graph. How to utilize the infor-
mation to generate the semantic features of a program from
the control flow graph is a big challenge. In this work, we
formalize this problem as a multi-instance task: The control
flow graph of a program contains multiple paths. Each path
in the control flow graph is considered as an instance and the
whole program is considered as a bag. If any path is relevant
to the bug report and labeled as buggy (positive), the source
code file is buggy and relevant with the bug report.

Noticing that the middle-level features are generated from
each statement of source code, which maintain inherent se-
quential nature from the original execution paths. There-
fore, LSTM is then concentrated to model the sequential
relationships between statements. A pooling layer that in-
volves a mean pooling operation is connected to LSTM,
which aims to fuse the outputs zt from each time step.
We generate the semantic feature zcij of the j-th path of
source code Ci by averaging zt from each time step: zcij =

(
∑T

t=1 πitz
c
it)/

∑T
t=1 πit, where πit ∈ {1, 0} is the in-

dicator variable, πit = 1 if statement t of source code
Ci is present in time step t, and πit = 0 otherwise. The
last pooling layer is connected to generate the final rep-
resentation of the source code among all expaths: zci =
Pooling(zci1, z

c
i2, . . . , z

c
in), which are then fed into the joint

feature learning layer for further fusion.
After processing from language-specific feature extrac-

tion layer, the generated features zr from bug reports and
zc from source code are then fed into joint feature learn-
ing layer, where a fully-connected network is employed for
learning a unified feature and followed by an output layer
mapping to the predictions Y . However, a bug report may be
only relevant to one or a few source code, while a large num-
ber of source code are irrelevant and this imbalance nature
should be considered. Similar to (Huo and Li 2017), some
negative instances are randomly dropped in the joint feature
learning layer, which can decrease the computational cost
and counteract the negative influence.

Specifically, the parameters of natural language spe-
cific network for bug reports can be denoted as Θr =
{θr1, θr2, . . . , θrl } and the parameters of programming lan-
guage specific network can be denoted as ΘC =
{θC1 , θC2 , . . . , θCl }. LetW denotes the parameters in the joint
feature learning layers. Therefore, the loss function implied
in CG-CNN is:

L(ΘC ,Θr,W ) =

N1∑
i=1

N2∑
j=1

`(zri , z
C
j , yij) + λLr (2)

where
`(zri , z

C
j , yij) = −(ỹij log ỹij + (1− yij) log(1− ỹij))

Here, yij denotes the label of pairs of the bug report ri and
the source code Cj and ỹij denotes the prediction. Lr is the
regularization term and the parameter λ controls the trade-
off between the loss and regularization. All the parameters
are learned by minimizing the loss function using stochastic
gradient descent (SGD) based method.



Table 1: Comparisons results in terms of MAP. The best performance of each data set is boldfaced.

methods BugLocator AmaLgam NP-CNN LS-CNN DeepWalk mLS-CNN CG-CNN

PDE 0.342 ◦ 0.374 ◦ 0.452 ◦ 0.462 ◦ 0.470 ◦ 0.467 ◦ 0.487
PU 0.389 ◦ 0.381 ◦ 0.396 ◦ 0.408 0.401 ◦ 0.406 0.406
JU 0.433 ◦ 0.449 ◦ 0.471 ◦ 0.495 ◦ 0.482 ◦ 0.507 ◦ 0.531

Tomcat 0.430 ◦ 0.427 ◦ 0.488 ◦ 0.481 ◦ 0.501 0.489 ◦ 0.510

Avg. 0.399 0.408 0.452 0.462 0.464 0.467 0.484

Table 2: Comparisons results in terms of MRR. The best performance of each data set is boldfaced.

Project BugLocator AmaLgam NP-CNN LS-CNN DeepWalk mLS-CNN CG-CNN

PDE 0.425 ◦ 0.431 ◦ 0.542 ◦ 0.545 ◦ 0.552 ◦ 0.549 ◦ 0.566
PU 0.471 ◦ 0.471 ◦ 0.496 ◦ 0.510 0.502 ◦ 0.509 0.518
JU 0.527 ◦ 0.553 ◦ 0.581 ◦ 0.581 ◦ 0.571 ◦ 0.592 ◦ 0.615

Tomcat 0.480 ◦ 0.465 ◦ 0.529 ◦ 0.536 ◦ 0.547 ◦ 0.542 ◦ 0.560

Avg. 0.476 0.480 0.537 0.543 0.543 0.548 0.565

Experiments
To evaluate the effectiveness of CG-CNN, we conduct ex-
periments on open source software projects and compare it
with several state-of-the-art bug localization models.

Experiment Settings
The datasets used in the experiments are extracted from
widely-used open source software projects. All the projects
and ground truth of bug reports and software code can be ex-
tracted from bug tracking system (Bugzilla) and version con-
trol system (Git), which have been widely used in previous
studies (Zhou et al. 2012; Saha et al. 2013; Ye et al. 2014;
Huo et al. 2016). The first project PDE1 (Plug-in Develop-
ment Environment) is a tool to create and deploy features
and plug-ins of Eclipse. Another project is Platform2 that
contains a set of frameworks and common services which
make up Eclipse infrastructures. We use component “UI”
and refer as PU in this paper. We also investigate project
JDT3 (Java Development Tools), which is an Eclipse project
used for plug-ins support and development of any Java appli-
cations. We also use source code from the component “UI”
as our experiments, which is referred as JU. The last Tomcat
is a web application server and servlet container4. Specifi-
cally, as suggested in (Kochhar et al. 2014), some bug re-
ports are fully localized are filtered, i.e., developers have
already identified all buggy source code files in the bug re-
ports. For such bug reports, bug localization tool is no longer
needed.

We consider three evaluation metrics: Top-k, MAP (Mean
Average Precision) and MRR (Mean Reciprocal Rank),
which has been widely-used in previous bug localization
studies (Zhou et al. 2012; Huo et al. 2016; Huo and Li 2017).

1http://www.eclipse.org/pde/
2http://projects.eclipse.org/projects/eclipse.platform
3http://www.eclipse.org/jdt/
4http://tomcat.apache.org

We compare our proposed model CG-CNN with following
baselines:

• BugLocator (Zhou et al. 2012): a state-of-the-art bug lo-
calization method which employs revised Vector Space
Model to measure the similarity between reports and lo-
cates buggy files related to a given bug report.

• AmaLgam (Wang and Lo 2014): a state-of-the-art bug lo-
calization model which combines version history, similar
bug reports and structure information for bug localization.

• NP-CNN (Huo et al. 2016): a state-of-the-art CNN-based
bug localization model, which employs two different
CNNs to learn unified features from source code and bug
reports for locating buggy source files.

• LS-CNN (Huo and Li 2017): a state-of-the-art deep bug
localization model, which extends NP-CNN by combin-
ing CNN and LSTM to enhance the unified features by
exploiting both sequential nature of source code.

• DeepWalk (Perozzi et al. 2014): a state-of-the-art method
for learning latent representations of vertices in a network
by treating walks as the equivalent of sentences. Deep-
Walk has been shown effectiveness in several network
classification tasks.

• mLS-CNN: a variant of LS-CNN, which is based on
multi-instance learning. mLS-CNN firstly learns repre-
sentation of each path in CFG of then employs pooling
operation to generate the unified feature representation.

To compare with previous methods, we follow same pa-
rameter settings suggested in their studies (Zhou et al. 2012;
Wang and Lo 2014; Huo et al. 2016). In CG-CNN, pre-
trained word embedding model (Mikolov et al. 2013b) is
firstly applied to encode each token, which has been shown
effective in many text processing tasks (Kim 2014). We then
use traditional ReLU as activation function and the window
size of convolutional filters is set as 3,4,5 and 100 feature
maps is generated each filter. The number of nodes in LSTM



Figure 3: Comparison results of CG-CNN in terms of Top-10.

is the same as the output of CNN. In addition, the drop-out
method (Hinton et al. 2012; Krizhevsky et al. 2012) is ap-
plied in the fuly-connected layers to prevent overfitting.

Experimental results
The experimental results are clearly shown in this section.
In our experiments, 10-fold cross validation is repeated 10
times for each data set. We also conduct Mann-Whitney U-
test and Bonferroni correction on each setting, and summa-
rize the results in each result table. If CG-CNN significantly
outperforms a compared method, the inferior performance
of the compared method would be marked with “◦”, and “•”
if CG-CNN performs significantly worse.

Table 1 and Table 2 show the average performance of all
compared methods in terms of MAP and MRR, respectively.
The best performance on each data set is boldfaced. It can be
observed from the tables that CG-CNN almost achieves the
best performance except that on PU in terms of MAP. The
reason that CG-CNN does not show significant improve-
ment in PU may be that the source code is not complex
and control flow graph does not provide further informa-
tion and semantics. Besides, CG-CNN achieves the best av-
erage performance in terms of MAP. For example, the aver-
age MAP of CG-CNN is 0.484, which improves the average
MAP of BugLocator (0.399) by 21.3%, AmaLgam (0.408)
by 18.6%, NP-CNN (0.452) by 7.0%, LS-CNN (0.463) by
4.5% , DeepWalk (0.464) by 4.3%, mLS-CNN (0.467) by
3.5%. It can be observed that CG-CNN performs signifi-
cantly better than DeepWalk and LS-CNN, which means the
multi-instance based setting could be a better solution to ex-
tract features from CFG. The performance of CG-CNN is
also better than mLS-CNN, which can be regarded that the
semantic feature generated from CG-CNN is more represen-
tative and contain richer information for identifying buggy
source code.

Similar trends are also observed in terms of MRR. CG-
CNN achieves the best performance among the compared
methods and the best average performance. For example,
the average MRR of CG-CNN is 0.565, which improves
the average MAP of BugLocator (0.476) by 18.7%, AmaL-
gam (0.480) by 17.7%, NP-CNN (0.537) by 5.2%, LS-CNN
(0.543) by 4.0%, DeepWalk (0.543) by 4.0%, mLS-CNN
(0.548) by 3.1%. We also conduct Mann-Whitney U-test
on each setting and summarize the results in Table 1 and
Table 2. We can find that among the 24 different compar-

isons (6 compared methods on 4 data sets) in terms of MAP,
CG-CNN performs significantly better on 21 settings and in
terms of MRR, CG-CNN performs significantly better on 22
settings and shows great improvement against all compared
methods.

For better illustration, comparison results in terms of Top-
10 are illustrated in Figure 3. It can be noticed that CG-CNN
achieves the best performance among the compared methods
on all data sets, which means CG-CNN is able to identify the
most buggy source code when the same number of potential
files are examined.

In summary, the goal of this paper is to show that struc-
tural information in the code can be leverage to improve
bug localization. The key technical challenge we aim to ad-
dress is how to model these structural information provided
with the textual information in bug reports. We formalize
this problem as a multi-instance learning problem and de-
sign a specific model CG-CNN. The results on wide-used
data sets shows that, CG-CNN performs significantly better
than state-of-the-art bug localization and graph embedding
methods, which demonstrate the effectiveness in extracting
semantic features from source code to improve bug localiza-
tion.

Conclusion
In this paper, we are the first use multi-instance decomposi-
tion to learn semantic features from control flow graph for
bug localization. We propose a novel deep model named
CG-CNN to learn the unified features by exploiting rich
structural information from control flow graph. CG-CNN
firstly use CNN and DeepWalk model to learn feature rep-
resentation of each statement and further extract semantics
from control flow graph based on multi-instance decompo-
sition. The results of experiments on large scale of open-
source project show that CG-CNN performs significantly
better than several state-of-the-art bug localization models,
which demonstrates that the control flow graph is able to
provide more information and CG-CNN is effective in ex-
tracting semantic features of source code.

In addition, we aim to show that structural information
can be leveraged for bug localization in this paper. We
choose to extract semantic features from control flow graph.
More structures such as data flow graph and abstract syntax
tree can be incorporated to improve bug localization in the
future.
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